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Introduction

Current methods for estimation of Relative Reproductive Success are biased. A basic and
apparently unsolved problem exists in the estimation of Relative Reproductive Success (RRS)
(Chris Beasley, Quantitative Consultants, and Michael Ford, NOAA Fisheries, personal
communications). RRS is defined as the ratio of offspring per hatchery parent spawning
naturally to offspring per wild (natural spawned) parent spawning naturally (Hinrichsen 2003,
Araki et al. 2008). Table 1 presents the form of a simple hypothetical data set for which one
may wish to estimate the RRS. The problem stems from the fact that, e.g., a hatchery male (#2
in Table 1) may be known to have been on the spawning ground, because he was released
above a weir or his carcass was seen on the spawning ground, however no offspring are
observed in samples of par, smolt, or returning adults. If the zero offspring for male #2 is left in
the data set, the results are biased negatively for the fitness of hatchery males, because
offspring could have been produced but none were observed in the samples of par, smolt, or
returning adults. If the zero for male #2 is removed from the data set, the results are biased
positively for the fitness of hatchery males, because the average fitness of hatchery males with
observed offspring is being estimated and there are likely some hatchery males that did fail to
produce offspring.

Table 1. Matrix of data of interest for RRS studies.

Sex of
Parent
sample | M(0) F(1) | offspring origin age | weight

1 M 4 H 3 14
2 M 0 H 4 16
3 M 6 W 4 18
4 M 2 W 4 22
5 F 12 H 4 24
6 F 0 H 5 28
7 F 16 W 4 25
8 F 22 W 5 28

As it is likely that data will contain substantial zero offspring cases for a given parent (male,
female, hatchery or wild) it is crucial to explicitly model this portion of the population to avoid
biases in the estimation of fitness.



A correction for bias in estimation of RRS

This method, conceived by Dr. Brian Manly, WEST, Inc., depends on the assumption or
verification that an appropriate model is available for the probability distribution of the ‘true’
number of offspring for a given parent. These discrete probabilities are denoted
P, P, P, ..., P, , for the probabilities of 0, 1, 2, ... n offspring for a given parent. We chose to

first implement the Poisson distribution with inflated zeroes to model the number of offspring
(Johnson, Kotz, and Kemp, 1992). The Poisson model by itself is appropriate for counts greater
than zero for this type of data in most cases, however the zero inflated Poisson allows for an
excess of zeros followed by the standard Poisson for positive counts. Other models such as the
negative binomial are candidates, and tests for the goodness of fit of the basic model to be
used are necessary parts of the analysis. At this point in time, only the zero inflated Poisson
model is programmed into the R computer software programs in the Appendix 1. Other models
that can be considered and programmed, with tests for which is appropriate, are the Poisson,
negative binomial, and the zero inflated negative binomial.

Let Q be the sampling probability of the offspring (assumed known or estimated). For
example, Q may be equal to 1.0 if all returning adults are observed at a weir leading to the
spawning ground, or Q may be estimated as the proportion of smolts sampled in screw traps
during out migration. The probability of observing 0 offspring for a given parent is the
probability of 0 offspring, plus the probability of 1 offspring times the probability of not
observing the offspring in the sample, plus the probability of 2 offspring times the probability of
not observing either of the two in the sample, ..., etc., ... The sum is continued until the terms
are sufficiently small. In symbols, this is written as

(1) Prob(0)=P, +P(1-Q)+P,(1-Q)* + P,(1-Q)* +...
Similarly, the probability of observing 1 offspring is

. _ )2
Prob(?) =RQ +2RQ(1-Q) +3RQA-Q)" +... , and the probability of i offspring is

i+1
i

Prob(i) = RQ" + Pm[ ]Q‘(l—Q) +PR. [i |+ ZJQ‘(l—Q)Z +..,i=0,1,2,3,..,

i+n
where | .

j denotes the number of ways i+ nitems can be taken i at a time.
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In the zero- inflated Poisson model, the P are written as

L
P=1-7+ze*wheni=0and P =7 :1 ,wheni>0,wherel—7 is the probability of zero
i!

offspring and ris the probability of observing at least one offspring when excess zeros come
from a different generating process than non-zero counts and A is the mean of the non-zero
counts.

The values of iare the observed number of offspring corrected for the fact that only
Q(100)% are observed in the samples. The number of offspring observed, o, for a given parent

1
is expanded by multiplication by the factor 6 to estimate i, i.e., i = 0/Q, for a given parent. The

likelihood (equation 2) of the data is then written as the product of the probabilities of the
observed numbers, the Prob(i), and is then maximized to estimate the zero inflation Poisson

parameters, (7, and A) that give B, P, P,, ..., P, for an adult parent. The function ‘optim’ in

the statistical software program R is used to numerically maximize the likelihood.
(2) L(R,, B,...R)=]]Prob().
i=1

Having obtained the maximum likelihood estimates of 7 and A and the probabilities of
occurrence of 0, 1, 2, ... offspring, P,, P, P,, ..., P,, the expected number of offspring can then

be calculated as the sum of the probabilities of occurrence times the number of offspring. For
example, the probabilities would be estimated for a hatchery (H) female (F) parent and the

expected number of offspring estimated by:

(3)
E(number of offspring |H,F)=0-Prob, (0)+1-Prob, (1) +2-Prob, (2)+...+i-Prob, (i) +...

For a wild (W) female (F) parent the probabilities would be re-estimated and the expected

number of offspring would be:

E(number of offspring |W,F)=0-Prob, (0)+1-Prob,, (1) +2-Prob, (2)+...+1-Prob, (i) +...

An estimate of RRS for hatchery females relative to wild females is then calculated as the ratio,

E (number of offspring |H, F)

4)RRS,. . = '
(4) RRS¢ E (number of offspring |W, F)




Confidence intervals and standard errors for estimated RRS can be obtained by re-
sampling procedures implemented in the R program, ‘manly.main’ via the R boot and boot.ci
functions as shown in Appendix 1a. If sufficient data are available, this program can be used to
estimate RRS for other subsets of the data. That is other attributes of the parent influencing
RRS such as age and weight might be considered. An example might be the RRS of age 4
hatchery males and age 4 wild males confined to a certain weight class.

Determination of Adequate Sampling Effort

Three sources of sampling variation can be identified in relative reproductive success
(RRS) studies which are measured at the juvenile life stage; adult enumeration, juvenile
enumeration and genotyping error (Galbreath et al 2008). A critical need exists for information
on precision and confidence intervals for RRS or statistical power in RRS experiments. In this
paper, we consider the effect of different levels of smolt sampling intensity on acceptable levels
of confidence in the assessment of significance of estimated RRS different from 1. For this
stage of the work it has been assumed that adult enumeration is complete with 100 percent of
adult escapement genetically sampled. Itis also assumed that the assignment of offspring to
their respective parents is without error.

Studies without a sufficient sample size, i.e., Q is too small, will result in a failure to
detect a significant effect when it exists; however, there is often a high cost associated with
field collection and genetic evaluation of large samples of parr, smolt and adults (Murdoch et al.
2007). This consideration makes sample size (power) a crucial step in designing RRS studies.
One approach is to develop simulation models which would assist investigators in choosing
adult and juvenile sample sizes that could be expected to attain a desired level of precision in
the estimation of RRS. The models should be based on real data to reflect, actual expected
data distributions, sampling rates, and hatchery — wild escapement conditions similar to those
expected for the particular location or region of a proposed study (Berejikian et al. 2004).
However users could create their own hypothetical input data to reflect alternative smolt
abundance, fithess levels and adult covariate scenarios.

This report describes a method for examining alternative sample sizes, i.e., the
proportion of parr, smolt, or returning adults, Q, to sample for parentage analysis. The
objective is to meet precision and power requirements in RRS studies in which the number of
offspring per hatchery parent is to be compared to the number of offspring per wild parent.
The overall objective is to provide a flexible tool for researchers in RRS studies which would
allow them to design experiments that would attain chosen levels of statistical power at
optimal sampling rates of parr and smolt for genetic assignment. A proposal for future work is
given at the conclusion of this report that would extend the boundaries and assumptions of
current work to include adult enumeration variability, genotyping error and full development of
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computer programs as well as a Monte Carlo study of potential fitness estimation bias and the
effectiveness of the Manly program to correct for bias.

Determination of Q to meet precision requirements in RRS studies.

We examine alternative sample sizes to meet precision requirements in RRS studies
using the bootstrap percentile method or power simulation algorithm (Beran, 1986), but
without correction for estimation of non-zero offspring for cases in which the sampled data
show zero offspring, i.e., without correcting the zeros. As we understand the current state of

knowledge, researchers are analyzing their data without correcting the zeros. Also, our
professional judgment is that recommendations for sample sizes to meet precision using this
method will not vary much from recommendations that may be made when correcting the
zeros. Future work would include determination of adequate sample sizes and sampling rates
(Q) when correcting for zeros using the Manly model.

When there are adults which have not been sampled, the case of incomplete adult
enumeration, the effect is similar to that of reducing Q, decreased power to detect RRS
different from 1. This is because progeny of the missing adults cannot be assigned to their
respective parents. Thus the total number of assigned offspring is reduced and precision to
estimate fitness is lower. [f adults are sampled in an unbiased manner, e.g., genetic
information is randomly collected on 50% of the adults, then Q will effectively be reduced by
the sampling fraction. That is, if 50% of the adults are sampled then it will only be possible to
identify the male parent (or the female parent) of approximately 50% of the sampled juveniles.
In the case of random collection of genetic samples from the parents, this section can be used
to help determine the proportion of juveniles for which parents can be determined, i.e., the
effective value of Q. In the case of an experiment in which incomplete adult enumeration is
expected, the sampling fraction, Q, could be increased to help offset the effects of the missing
adults for which offspring will be unassigned. Use of the programs then could assist fisheries
investigators in the design of an RRS experiment where errors in adult enumeration are
expected by allowing them to set sampling rates sufficient to offset the lowered power due to
missing parent fish.

The case of incomplete adult enumeration may or may not result in unbiased estimates
of fitness and RRS. Certainly RRS would be more likely to be biased if adults were missing
disproportionately by origin of adult or level of fitness.

The most general approach uses the superpopulation non-parametric bootstrap that
takes into account the potential finite sampling nature of smolt collections for subsequent
parentage assignment (Davison and Hinkley, 1997). The use of infinite population methods in
finite sampling problems results in an overestimation of variance (Thompson, 2002; Davison



and Hinkley, 1997). Thus offering a technique for handling the finite sampling case for studies
in which Q is greater than 0.1 seems appropriate. If Q < 0.1, this step can be skipped and there
will be a savings in required computer time. When Q > 0.1 there is an advantage of shorter
confidence intervals. The finite nature of the sampling is mimicked by creating a bootstrap

. .1 . .
super-population, concatenating 6 copies of bootstrap re-samples from the original data.

1
Adjustments are available for the case when — is not an integer (Davison and Hinkley, 1997).

The bootstrap superpopulation is then sampled without replacement at the original sample size
to achieve one bootstrap sample. RRS is computed from the re-sample datasets as well as a
bootstrap standard error. The superpopulation bootstrap program plots standard errors
against user selected alternative Q values (Figure 1). Suppose it was of interest to know the
standard error of RRS at a value of Q equal to .30 when the original input data was collected
under a sampling scheme that allowed a Q of only .10. The user would input these two values
of Q when running the program along with the name of the dataset. The first step is to create a
facsimile of the original population. In the case of Q =.10, 1/.1 or 10 copies of the original
dataset are sampled with replacement from the original data and then concatenated to create
the simulated version the original population that was sampled at Q = 0.10. A bootstrap sample
for Q = 0.3 would then consist of re-sampling without replacement a sample .3/.1 or three
times the size of the original data set from the simulated population data. Compared to the
case where Q =.10, the Q = 0.3 bootstrap estimate having been made on samples three times
larger than the Q = 0.1 case, will produce smaller standard errors for RRS.



Superpopulation Bootstrap of RRS for Finite Sampling Case
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Figure 1. Bootstrap standard error of estimated RRS for Q = 0.1, 0.2 and 0.4 using the bootstrap
super-population method which accounts for the finite sampling case where Q is the smolt
detection probability. Data for hatchery offspring per parent and wild offspring per parent were
generated from Poisson distributions with means of 15 and 20 respectively.

When these data are sampled at rates of less than 10% the difference in variance
estimated using finite population methods from that when using methods which assume an
infinite population becomes negligible. For example, when applying a finite population
correction adjustment for a sampling fraction of f =n/N, a confidence interval for the mean

offspring count is shortened by a factor (1- f)”2 . For Q =0.07 this amounts to only .96. Thus
for samples in which f is less than 0.1 the data may be considered to have been sampled from

an infinite population without appreciable bias in variance estimation. Non parametric
bootstrap methods which assume that the data are sampled from an infinite population include
the percentile bootstrap or power simulation method.

The power simulation method employs a bootstrap null hypothesis distribution of RRS,
the critical percentiles of which are then compared to the bootstrap alternative distribution to
give a value of the power of rejecting a null hypothesis of RRS = 1, or equivalently that the



difference between hatchery fitness and wild fitness equals 0. The effect size is the value of RRS
computed from the original data without correcting the zeros and a significance level is chosen
by the user. The bootstrap percentile method has the advantage of simulating the null
distribution of RRS and providing statistical power without a distributional assumption. Using
the R software program in appendix 1c., it is possible for the user to vary the sampling fraction,
Q, to find associated power, Figure 2.
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Figure 2. Power to detect RRS different from 1 and proportion of smolt population sampled.
Data was generated from zero-inflated Poisson distributions with the probability of a zero in
the data equal to 7 =0.3. Sample sizes for hatchery and wild offspring counts was 75

and 150 cases respectively. Data sets for Q =.3, .2, .1 and .05 were obtained by sampling from
zero inflated Poisson distributions with 7z = 0.3 and hatchery and wild means of offspring
equal to 30, 22.5 The R package VGAM was used to generate the four datasets.



Another use of the software is to investigate the effects of the proportion of zeros in the
data on the power to reject the null hypothesis that the RRS = 1.0. Figure 3 contains an
illustration of the type of power curves that can be developed using the R software programs in
the Appendix.
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Figure 3. Power to detect RRS of 0.74-0.80 different from 1.0 for three sample sizes of hatchery
smolt and wild smolt: 50, 100; 38, 75; and 25, 50 for Poisson simulated data having hatchery
mean = 15 and wild offspring mean = 20 with frequencies of zero count offspring varying from
0.0 to 35 percent.

Figure 4. shows expected fitness estimated by the manly.main R program and fitness using
average offspring per parent for three data sets have 30 percent zero cases.
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The R program, ‘manly.main’ calls two functions, ‘manly.RRS.w’ and ‘manly.RRS.h’ which
compute the likelihood of the data as functions of the zero-inflated Poisson (zip) probabilities of
occurrence of number of offspring per parent. The zip probabilities are functions of two
parameters, 7, the probability of a zero offspring and A, the mean. The likelihood is then
maximized via the R function ‘Optim’ in the main program, and maximum likelihood estimates
of the parameters are returned; these are used in the estimate of hatchery fitness, wild fitness
and RRS within the main program. The bootstrap simulation step is handled by the built-in R
function ‘boot’ for which the user specifies the data, the above program, manly.main, the
sampling fraction, Q, initial values for the parameters of the overall zip probability distribution
function as well as the number of bootstrap replicates as arguments. Output of the boot
function consists of the estimate of RRS, bootstrap standard error of RRS and an estimate of
bias. Bootstrap confidence intervals can be obtained by using the built-in R function ‘boot.ci’
with the boot function output as an argument. The user may specify the type of confidence
interval (percentile or bias corrected) as well as the confidence level as additional arguments to
‘boot.ci.’

Brian Manly Model Based Maximum Likelihood Bootstrap Algorithm
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10

11

12

13

expand the maximum value of both hatchery and wild offspring per parent in the data by
a factor of 1/Q where Q is the estimate of the smolt sampling fraction to obtain an
estimate of the maximum offspring per parent in the smolt population.

apply the zero-inflated Poisson (zip) probability function to the sequence
1:max(offspring) for each origin offspring maximum computed in 1 and index the
sequence by the letter j.

multiply the vector of probabilities of 1 through max offspring in 2 for each origin by a
matrix of binomial probabilities, one matrix for each origin type. Create the two hatchery
and wild binomial probability matrices as follows:

a. the rows of the matrix are indexed by increasing i where i is a unique number of
offspring per parent observed in the data. The row entries consist of i — 1 zeros
followed by the sequence of binomial probabilities of i offspring where the number of
binomial trials is i through max offspring and where p the probability of a sampled
offspring equals Q and 1-p the probability of not sampling an offspring equals 1-Q.

compute an expression for the likelihood by writing the product of the entries of the

vectors obtained in step 3. Do this for each origin type.

maximize the two likelihoods, one for each origin type, by separate calls to the R function

Optim.

apply the zip parameters estimated in step 5 to the zip probability function to estimate

the probabilities of the observed numbers of offspring for each origin type.

estimate fitness for each origin type by summing the products of the observed offspring

numbers by their respective estimated probabilities.

estimate RRS as the ratio of estimated hatchery fitness to estimated wild fitness.

repeat steps 1-8, r = 1 through R times for R bootstrap datasets obtained by re-sampling

with replacement from the original data.

compute the bootstrap mean fitness and bootstrap standard error as the empirical mean

and standard error of the bootstrap estimates of RRS.

compute the bootstrap estimate of bias by subtracting the original estimate of RRS from

the mean bootstrap estimate of RRS.

Compute the 1- alpha percent bootstrap percentile confidence interval by choosing the

alpha/2 x 100 percentile and 1-alpha/2 x 100 percentile of the sorted bootstrap RRS

estimates where 1-alph x 100 is the confidence level of interest. Divide the confidence
interval by 2 to obtain a half-width confidence interval.

Note: Steps 10— 12 are carried out by the R built-in functions boot and boot.ci.

Finite Sampling Superpopulation Bootstrap Algorithm (Davison and Hinkley 1997)
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Description: The R program, ‘RRS.superpop.boot.multg’ in Appendix 1b. gives bootstrap
estimates of standard error of RRS when input is a dataset formatted as in Appendix 1a. and a
value of Q, the probability of observing a given offspring. This approach takes into
consideration the finite-sampling effects of estimated variances when Q ranges from 0.1-0.5
(Davison and Hinkley 1997, pgs. 92-94)

Forr=1,..., R, and origin = Hatchery, Wild

1 generate a replicate superpopulation Y™ = (Y, ,.., Y,) by sampling N times with
replacement from y,,..., Y, and concatenating these N samples of size n. Here
N=z=n/Q.

2 generate a bootstrap sample Y~ = (Yl*,..., Yn*) by sampling n times without replacement
from Y =(Y,...,Y,),and set RRS, =rrs(Y,,...,Y).

3 calculate the empirical standard error and half-width confidence intervals of the R
bootstrap RRS statistics.
4 repeat 1-3 for different datasets and variable Q or choose alternate values of Q with

the original Q.

5 plot bootstrap standard errors and half-width confidence intervals against Q.

Calculating Statistical Power with the Percentile Bootstrap (Beran 1986, Hall and Wilson 1991)
forQ<0.1.

Description: The R program, ‘RRS.power’ in Appendix 1c, uses input data formatted as in
Appendix 1a., a significance level and the number of bootstrap replicates required. Output is
the power of detecting a difference in fitness between hatchery origin adults and wild origin
adults equal to that of the sample data (effect size).

center the hatchery and wild offspring counts on their respective means.
sample n, times with replacement from the entire centered offspring vector and sample

n, times with replacement from the adult wild fish sample ids. Compute the fitness of

the above bootstrap sample using the bootstrapped sample ids.
3 repeat 2, this time sampling n, times with replacement from the entire centered

offspring vector and sampling n, times with replacement from the adult hatchery fish

sample ids. Compute the fitness of the above bootstrap sample using the bootstrapped
sample ids.
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4  subtract the above hatchery fitness from the wild fitness. This difference is one
bootstrap sample comprising the empirical null distribution (choose R = 500, 1000, ...).
The empirical null distribution will be centered on 0.

5 calculate the critical scores that correspond to the 2.5" and 97.5" critical alpha regions
under the empirical null distribution: round ((.05/2)x(#bootstrap samples)) for lower
percentile; and round ((1-(.05/2))x(#bootstrap samples)). Locate the scores that
correspond to those percentiles.

6 generate the bootstrap alternative distribution:

A.) re-sample with replacement from wild portion of the data matrix offspring vector with
replacement to generate a bootstrap sample of wild offspring with length equal to the
original wild offspring sample size.

B.) re-sample with replacement from the hatchery portion of the data matrix offspring
vector with replacement to generate a bootstrap sample of hatchery offspring with
length equal to the original hatchery offspring sample size.

C.) calculate fitness for both wild bootstrap sample and hatchery bootstrap sample using
respective adult sample ids.

D.) subtract the hatchery fitness from the wild origin fitness. This is one bootstrap
difference representing the difference in fitness under the empirical alternate
distribution. This difference is centered on the population difference under the alternate
hypothesis.

7 Calculate the empirical power of the statistical test

A.) Using the upper and lower critical scores for the empirical null hypothesis calculated in
step 5.), calculate the number of difference values in the empirical alternative sampling
distribution that are as or more extreme than the critical scores under the null
distribution.

B.) Take the count in step A.) and divide by the total number of bootstrap samples. This is
the empirical power for the statistical test that tests no difference between hatchery
fitness and wild fitness (or RRS different from 1) versus the alternative hypothesis that
hatchery fitness is different from wild fitness for the value of Q given for the original data
set at the specified value of alpha for the effect size equal to the original sample fitness
of hatchery fish minus fitness of wild fish.

Notes: It should be possible and perhaps recommended that the finite-sampling super-
population re-sampling approach be applied in Method 2 if Q is greater than 0.1,
otherwise variances may be overestimated (Davison and Hinkley 1997).
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Conclusion

Copies of this report and the computer software programs in the appendices are
available for download on the West, Inc. web site http://www.west-inc.com.

The Manly method has been presented for point estimation of RRS while correcting for
excess zeros in the data with measures of precision in the form of confidence intervals and
standard errors for RRS. We also provide sample size guidance for establishing required levels
of precision in RRS studies where it is expected that offspring sampling will be incomplete. For
this stage of the work it has been assumed that adult enumeration is complete with 100
percent of escapement genetically sampled. It is also assumed that the assignment of offspring
to their respective parents is without error. The basic method ‘corrects the zeros’ in studies of
RRS. Point estimates of RRS for specific subsets of the data with standard errors and
confidence intervals can be obtained using the R program ‘manly.main’ in conjunction with
built-in R functions for bootstrap estimates. The programs along with instructions for use and
an example are given in Appendix 1. Potential models for the numbers of observed offspring
that have been programmed are the zero- inflated Poisson, and zero-inflated negative binomial.
The zero-inflated Poisson program is available for use while the zero-inflated negative binomial
requires further work.

Applying non-zero inflated models where the data are distributed according to a zero-
inflated model when using traditional asymptotic likelihood ratio sample size (power)
estimation approaches (Self, 1992), often results in an underestimate of sample size
(Williamson et al. 2007). The Brian Manly model based likelihood bootstrap method models
the excess zeros in the data as well as accounting for the probability of non-zero offspring for
parent/offspring pairs having zero offspring in the original dataset. The bootstrap percentile
method and the super-population finite sampling methods do not require a parametric
assumption but may be biased when data have excess zeros.

The super-population bootstrap is a non-parametric approach for estimating RRS and
has the advantage of taking into account the finite-sampling nature of offspring collections
when the sampling fraction is greater than 0.1. This method creates a simulated population
equal in size to the original population. Bootstrap samples are drawn without replacement from
the simulated population data to mimic finite sampling from the real population of offspring.
The method is simplified to be exchanged for the percentile bootstrap method when the
sampling fraction Q is small, e.g., below 0.1. The advantage of the bootstrap percentile method
is its easy implementation and intuitive approach as well as not having to adopt a parametric
model for the data.
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Appendix 1 displays the R computer programs for estimating RRS and an estimate of its
precision by the Manly method as well as by the other two non parametric bootstrap methods.
Sample sizes to achieve required precision in RRS studies in which parr, smolt, or adult stage
offspring are assigned to a single parent fish are among the output. Instructions for running the
programs are included in Appendix 1 as well as sample output.

Future work.
Sample sizes for precision and power using the Manly method

The preferred approach for the study of power is unfortunately still under development. It
would utilize the model based maximum likelihood method conceived by Brian Manly,

WEST, Inc., and discussed above. The method involves an underlying parametric model in which
a likelihood is constructed relating probabilities of observing a given number of offspring to the
probability of occurrence of numbers of offspring/parent at values estimated from bootstrap
re-samples of RRS data. The estimated probabilities are then used to estimate expected
fitness for each origin group. The standard model for counts of the observed number of
offspring per parent is the Poisson. However, if the data are over-dispersed such that the
variance of the count variable is greater than the mean, then a negative binomial distribution
may be used as it employs an additional parameter to describe the variance. If in addition the
data are zero-inflated, a zero-inflated Poisson or zero-inflated negative binomial distribution
may be appropriate. A useful R program would accommodate the above alternate distributions.
A simulation is run by re-sampling data where sampling effort and juvenile capture probability,
Q are set by the user.

The Manly method has the greatest potential of the models considered in this report, because
it allows estimation of non-zero offspring for cases in which the sampled data show zero
offspring and avoids bias if cases with zero observed offspring are dropped from the data set.
As it is likely that data will contain substantial zero offspring cases for a given parent it may be
crucial to explicitly model this portion of the population to avoid negative bias in the estimation
of fitness. The zero-inflated Poisson distribution assumes that a subpopulation generates the
zero counts; this distribution accounts for excess zeros by estimating a separate parameter for
the probability of zero values. Sample size (power) calculations are especially important for
zero-inflated models because a larger sample size is required to detect a significant effect with
these models than with the standard Poisson or negative-binomial models (Williamson et al.
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2007). Another objective is to include variability in the estimate of the sampling fraction, Q into
the estimation of RRS within the Brian Manly model based program.

The theory for this method is well understood, however the R computer software program
requires some additional work to identify and implement the appropriate alternative
distributions where necessary. Output would consist of standard errors or half-width
confidence intervals of RRS plotted against alternative values of Q to provide guidance in

sample size selection. The program would employ score tests to determine which distribution
is the most suitable for the data (van den Broek, 1995; Ridout et al. 2001).

Incomplete adult enumeration, its Relationship to Q, and effect on power

When there are adults which have not been sampled, the case of incomplete adult
enumeration, the effect is similar to that of reducing Q, decreased power to detect RRS
different from 1. This is because progeny of the missing adults cannot be assigned to their
respective parents. Thus the total number of assigned offspring is reduced and precision to
estimate fitness is lower. [f adults are sampled in an unbiased manner, e.g., genetic
information is randomly collected on 50% of the adults, then Q will effectively be reduced by
the sampling fraction. That is, if 50% of the adults are sampled then it will only be possible to
identify the male parent (or the female parent) of approximately 50% of the sampled juveniles.
In the case of an experiment in which incomplete adult enumeration is expected, the sampling
fraction, Q, could be increased to help offset the effects of the missing adults for which
offspring will be unassigned. Use of the computer software provided in this report then could
assist fisheries investigators in the design of an RRS experiment where errors in adult
enumeration are expected by allowing them to set sampling rates sufficient to offset the
lowered power due to incomplete collection of genetic information from the parents.

The case of incomplete adult enumeration may or may not result in unbiased estimates
of fitness and RRS. Certainly RRS would be more likely to be biased if adults were missing
disproportionately by origin of adult or level of fitness.

Incomplete adult enumeration and errors in assignment of offspring to parents

It is also necessary to extend the algorithms to experiments in which there is incomplete adult
enumeration and assignment of offspring to parents is not without error. Guidelines are
needed for the numbers or percentage of adult spawners to sample to provide acceptable
power and precision for estimates of RRS. Similarly the effect of errors in assignment of
offspring to parents on precision of estimates of RRS should be studied

One way in which the effect of incomplete adult enumeration could be included into the
analysis of RRS precision would be to allow the user to randomly eliminate cases (rows) from
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the data. The point estimate of RRS and bootstrap confidence interval obtained with the full
data could be compared to the estimate and bootstrap confidence interval obtained from the
data with the randomly missing adult/offspring cases to obtain an estimate of the effect of un-
sampled adults which may have escaped collection at the weir.

Modeling the effect of assignment error

To simulate assignment error the program could be configured to allow the user to miss-match
random cases of assignment of offspring to parent. Estimates from the mismatch computer run
could then be compared to estimates from computer output from the original error-free data
to investigate effects of assignment error on power and estimates of fitness and RRS.

Modeling the effect of covariates such as age and weight on RRS

It would also be of benefit to include covariates measured on parents in order to assess the
effect of adult morphological and behavioral characteristics on fitness, RRS and estimates of
their standard errors. This could be achieved by including these covariates in the zero-inflated
Poisson probability function which is used in the Brian Manly model based bootstrap. Null
model output would then be compared to covariate models to assess the effect of the
covariate.

Comparison of RRS between studies or years

Extension of the programs and algorithms to enable statistical comparison of RRS estimates
between studies or studies between years will be an important objective. Here the statistic to
be bootstrapped would be the difference in RRS between the two studies or years.

Programming of additional distributions and tests of goodness of fit

Future work should also entail configuring the Brian Manly model based bootstrap to use
distributions other than the zero-inflated Poisson distribution where appropriate. The zero-
inflated negative binomial has been programmed but not yet tested. Other distributions would
include the Poisson and negative binomial when excess zero data is not present. Score tests
and or goodness of fit tests within the program would help to insure selection of the correct
distribution to apply to the data.

Sensitivity of current estimation methods to the presence of zeros

Finally it is desirable to estimate and study the magnitude of the negative bias when estimating
fitness for populations in which data contain excess zeros. The level of this bias in relation to
sample size and data distributional properties should be explored. Monte Carlo methods can
be applied to run sensitivity analyses to establish where bias exists and under which sampling
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conditions it attains unacceptable levels when the goal is accurate and precise estimation of
RRS.
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Appendix 1 — R Programs, Instructions for use, data description, and sample output,

The program R can be downloaded from the following site:

http://cran.r-project.org/bin/windows/base/old/

Appendix 1a. Brian Manly Model Based Maximum Likelihood Bootstrap

Program Name: manly.main

(Current program uses a zero-inflated Poisson distribution to model offspring counts.)

Instructions for use

Download R version 2.6.2 by going to the website above.
Open package boot by typing ‘library(boot)’ at the R prompt.
Set up an RRS dataset in EXCEL which should look like the following example header and first

few lines:
sample  origin offspring
1 h 15
h 14
3 h 19
51 w 23
52 w 19
53 w 13

Column ‘sample’ are numbers to identify an adult parent to its respective assigned number of
sampled offspring in the ‘offspring’ column.

Save the dataset as a .csv file in a folder and directory of your choice.

4.

Set the R directory to the same one where the data file is stored by clicking on “file’ then ‘change
directory’ and selecting the appropriate directory and folder; click on ‘OK’.

Create a dataframe which the R program can use for input by typing the following at the R
prompt:

mydata<- read.csv(file = “mydata.csv”, header = TRUE, sep = “,”)

Highlight and paste the three R program, manly.main below, into R at the R prompt.

As an example, to obtain bootstrap estimates of RRS, type the following into the R prompt:
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out.boot <- boot( data=mydata, stype="i', statistic=manly.main, gq=.3, R=10, par=c(.7,80) )

notes on the arguments of the built-in R boot function:

Type ‘boot.out’ to see bootstrap estimates of RRS. Type ‘summary(boot.out)’ for a summary of
program run. Type boot.outSt to see R bootstrap estimates of RRS. ‘help(boot)’ for more
information on the function boot.

‘data’ is the dataframe you just created.

‘stype=1i’ is the re-sample index for the data.

‘statistic’ is the R function or R program in which the statistic to be bootstrapped is computed.
‘par’ consists of inititial values for the parameters of the zip distribution (ie. Percent 0’s in your
data set and maximum single offspring count for your data set’s offspring counts expanded by a
factor of 1/Q.

‘q’ is the smolt sampling fraction.

‘R’ is the user selected number of bootstrap re-samples.

Notes: Currently the program takes a considerable amount of time, say several hours, to run R
= 50 bootstrap replicates.

The current version of the code has a limit of max offspring of the expanded data of 160.

It may take more than one trial set of initial values to find one that allows convergence.

Type help(boot) for more information on how to use the R boot function.

The zero-inflated negative binomial distribution has been programmed but not tested.

To obtain bootstrap confidence intervals after having run the boot function , use the R built-in
function boot.ci by entering the following code into the R prompt:

boot.ci.out<- boot.ci( boot.out, type="perc", conf=c(.80,.95) )

The arguments of the boot.ci function are the output of the boot function in step 7.

‘type’ is the type of confidence interval, percentile in this case and ‘conf’ in which | have
selected an 80% and 95% confidence interval to be output are the confidence levels.

After running the boot.ci function, type ‘boot.ci.out’ to see the results.

For more information on the R boot.ci function type help(boot.ci) at the R prompt.
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Sample Output from Program manly.main
> boot.out
ORDINARY NONPARAMETRIC BOOTSTRAP
Call:
boot(data = dataset, statistic = manly.main, R = 10, stype = "i"
par = (0.7, 80), g =0.3)
Bootstrap Statistics :

original  bias std. error

t1* 0.6828665 -0.03847215 0.05328027

> boot.ci.out

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
Based on 10 bootstrap replicates

CALL:

boot.ci(boot.out = out, conf = ¢(0.8, 0.95), type = "perc")
Intervals :

Level Percentile

80% (0.5563, 0.7237)

95% (0.5519, 0.7275)

Notes: The sample simulated data for the above program was generated from a zip distribution

with parameters 0.30 probability of a zero offspring count and lambda (mean) for hatchery and

wild offspring counts of 22.5 and 30 respectively. The sample sizes were 75 for hatchery and

150 for wild origin fish.
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R Computer Program: manly.main for the Brian Manly Maximum Likelihood based Bootstrap

manly.main<-function(dataset,index,par,q)

# This program calls two functions, manly.RRS.h and manly.RRS.w, which compute the likelihood for
probabilities of observing offspring/parent.

# numbers in RRS data.

# Likelihoods for hatchery and wild observed probabilities are maximized wrt the parameters of a zero-
inflated Poisson (zip) distribution.

# Output is an estimate of RRS.

# par - initial values for zero-inflated Poisson, c(theta, lambda), where theta is the proportion of zeros
in 'dataset' and lambda is the mean offspring of the dataset/q.

# q - is the capture probability of a smolt or the sampling fraction.
dataset<- dataset[index,] # Set up bootstrap sample index.
attach(as.data.frame(dataset)) # Attach to name data columns in program.

n_h<- unique(dataset[origin=="h",]Soffspring) # Compute and sort unique numbers of observed
offspring/parent

n_w<- unique(dataset[origin=="w",]Soffspring)
n_h<- sort(n_h)

n_w<- sort(n_w)

len_n_h<- length(n_h)

len_n_w<- length(n_w)

manly.h<- function(par,...)
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# This function writes the negative loglikelihood of zero-inflated Poisson distribution data (mixture type)

of each of hatch and wild offspring count data

# for the Brian Manly method of estimating simulated se of RRS when offspring data is zero-inflated

Poisson distributed.

# Initial values for zero-inflated Poisson distribution of the hatchery offspring.
#par<- rep(NA,2)
theta_h<- par[1]

lambda_h<- par[2]

# The test smolt sampling fraction for the input dataset.
Q<-q

# dataset used for example.

#dat<-dataset

attach(as.data.frame(dataset))

# Distinct values of numbers of offspring for each origin type.
n_h<- unique(dataset[origin=="h",]Soffspring)
mean_h<- mean(dataset[origin=="h",]Soffspring)
n_h<- sort(n_h)

len_n_h<- length(n_h)

#write number of offspring as zero inflated poisson probabilities where 1-theta is the proportion of

extra zeros.
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offsprg_h<- rep(NA,len_n_h)
offsprg_h<- round(n_h/Q,0)

max_offsprg_h<- max(offsprg_h)

# Set up vectors of probabilities of occurence of 0,1,... offspring using parameters of zero-inflated
Poisson dist. which are to be estimated.

p_h<-rep(NA,max_offsprg_h+1)

p_h[2:(max_offsprg_h+1)]<- theta_h*(ppois(1:max_offsprg_h,lambda_h)-ppois(0:(max_offsprg_h-
1),lambda_h))

p_h[1]<- (1 - theta_h) + theta_h*ppois(0,lambda_h)

p_h<- as.vector(p_h)

#print(length(p))

# Set up, m, a matrix, the rows of which are observed probabilities expressed as a funtion of p and Q.

m_h<-rep(NA,len_n_h*(max_offsprg_h+1))

dim(m_h)<- c(len_n_h,(max_offsprg_h+1))

# compute binomial terms containing Q for observed probabilities

for (jin 2:len_n_h) {

m_h[j, 1:n_h[jl]<- rep( 0, n_h[j])

m_h[j,(n_h[j]+1):(max_offsprg_h+1)]<- dbinom( (n_h[j]+1),(n_h[j]+1):(max_offsprg_h+1),Q)
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m_h[1,]<- (1-Q)*(0:max_offsprg_h)

# Multiply the rows of m by the probabilities of occurrence to get the observed probabilities of 0,1,..
offspring per parent.

prob_h<-m_h%*%p_h
#print(sum(prob_h))

# Write the negative loglikelihood as the product of the observed probabilities of 0,1,..
offspring/parent.

print(prob_h)

-log(prod(prob_h))

manly.w<- function(par,...)

{

# This function writes the negative loglikelihood of zero-inflated Poisson distribution data (mixture type)
for wild offspring count data

# for the Brian Manly method of estimating simulated se of RRS when offspring data is zero-inflated
Poisson distributed.

# Initial values for zero-inflated Poisson distribution of the hatchery offspring.

27



#par<- rep(NA,2)
theta_w<- par[1]

lambda_w<- par[2]

# The smolt test sampling fraction for the input dataset.

Q<-q

# dataset used for example.
#dat<-dataset

attach(as.data.frame(dataset))

# Distinct values of numbers of offspring for each origin type.
n_w<- unique(dataset[origin=="w",]Soffspring)

mean_w<- mean(dataset[origin=="w",]Soffspring)

n_w<- sort(n_w)

len_n_w<- length(n_w)

#write number of offspring as zero inflated poisson probabilities where 1-theta is the proportion of
extra zeros.

offsprg_w<- rep(NA,len_n_w)
offsprg_w<- round(n_w/Q,0)

max_offsprg_w<- max(offsprg_w)
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# Set up vectors of probabilities of occurence of 0,1,... offspring using parameters of zero-inflated
Poisson dist. which are to be estimated.

p_w<- rep(NA,max_offsprg_w+1)

p_w[2:(max_offsprg_w+1)]<- theta_w*(ppois(1:max_offsprg_w,lambda_w)-ppois(0:(max_offsprg_w-
1),lambda_w))

p_w[1]<- (1 - theta_w) + theta_w*ppois(0,lambda_w)

p_w<- as.vector(p_w)

#print(length(p))

# Set up, m, a matrix, the rows of which are observed probabilities expressed as a funtion of p and Q.

m_w<- rep(NA,len_n_w*(max_offsprg_w+1))

dim(m_w)<- c(len_n_w,(max_offsprg_w+1))

# compute binomial terms containing Q for observed probabilities

for (jin 2:len_n_w) {

m_wl[j, 1:n_wl[j]I<- rep( 0, n_w[j])

m_w[j,(n_w[jl+1):(max_offsprg_w+1)]<- dbinom( (n_w[jl+1),(n_w[j]+1):(max_offsprg_w+1),Q)
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m_w(1,]<- (1-Q)*(0:max_offsprg_w)

# Multiply the rows of m by the probabilities of occurence to get the observed probabilities of 0,1,..
offspring per parent.

prob_w<-m_w%*%p_w
#print(prob_w)

# Write the negative loglikelihood as the product of the observed probabilities of 0,1,..
offspring/parent.

#print(prob_h)

-log(prod(prob_wy))

# Maximize the likelihood for hatchery offspring by calling the function manly.h.

out.h<- optim(par,manly.h,factr=1e3,maxit=250, method = "L-BFGS-B",
lower=c(.1, 10), upper=c(.99, 500))
out<-optim(par,manly.w,factr=1e3,maxit=250, method = "L-BFGS-B",

lower=c(.1, 10), upper=c(.99, 500))

# Simulated Annealing

#out.h <- optim(par,manly.h, method="SANN",
# control=list(maxit=200, temp=20))

#Hout <- optim(par,manly.w, method="SANN",

# control=list(maxit=200, temp=20))
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# Maximize the likelihood for wild offspring by calling the function manly.RRS.w.

thet_h<- out.h$Spar[1] # name estimated zip 0 probability parameter estimated by
optim above.

lam_h<- out.hSpar[2] # name estimated zip mean parameter estimated by optim
above.
lam_h<-lam_h*q # Scale zip mean parameter back to that of data.

pr_h<- rep(NA,length(n_h))

pr_h[2:len_n_h]<- thet_h*(ppois(n_h[2:len_n_h],lam_h)-ppois(n_h[1:(len_n_h-1)],lam_h)) # Compute
probabilites of occurrence of 0, 1, 2, ... offspring.

pr_h[1]<- (1-thet_h) + thet_h*ppois(0,lam_h) # of offspring/parent.
fitness_h<- t(pr_h)%*%n_h

# Compute hatchery fitness by summing products of
sample numbers # of offspring/parent with their
respective probabilities.

# of offspring/parent with their respective estimated
probabilities.

thet_w<- outSpar[1]
lam_w<- outSpar|[2]
lam_w<-lam_w*q

pr_w<-rep(NA,length(n_w))
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pr_w[2:len_n_w]<-thet_w*(ppois(n_w[2:len_n_w],lam_w)-ppois(n_w[1:(len_n_w-1)],lam_w))
pr_w[1]<- (1-thet_w ) + thet_w*ppois(0,lam_w)

fitness_w<- t(pr_w)%*%n_w

RRS<- fitness_h/fitness_w # Compute RRS as ratio of hatchery to wild

fitness.

return(RRS)

Appendix 1b. Finite-sampling superpopulation bootstrap

Program Name - RRS.superpop.boot.multq

Output — The output is a plot of bootstrap estimated standard errors of RRS versus user selected values

of Q.

Instructions for Use — See comment lines in the RRS.boot.multi.q program below.
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Dowload R using the website in Appendix 1a.

Format an RRS dataset, set R directory and create a dataframe by following steps 3-5 in

Appendix 1la.

3. Copy the RRS.boot.multi.q program into R at the R prompt.

4. Type RRS.boot.multi.q( ) at the R prompt and type in the following arguments separated by

commas within the parentheses the arguments for the program:

a.

b
c.
d.
e

The name of your dataframe.

The smolt sampling fraction

A list of sampling fractions as in “c(.1, .2, .3333,..)"

The number of bootstrap replicates.

An example would be RRS.boot.multi.q(mydata, .2, c(.1, .2, .3333),99)

RRS.superpop.boot.multg<- function(data,q,fraction,iter)

{

#This function implements a finite sampling superpopulation bootstrap for RRS, Davison and Hinckley
(1997) pgs.92-97.

#The function plots bootstrap se's of RRS versus user input values of g.

#user's values of g are in fraction.

#q is the sampling fraction of original data.

#iter is the number of bootstrap samples

#store bootstrap RRS means and RRS standard errors

RRS_values<- rep(NA,length(fraction))

sd_RRS_multi_g<- rep(NA,length(fraction))

#bootstrap RRS and it se for user's g values

for ( k in 1:length(fraction) )

{

Q<- fraction[k]

R<- iter

dat<- data

attach(dat)

33



fitness_h<- rep(NA,R)
fitness_w<- rep(NA,R)
# concatenate 1/Q copies of the original data
for (iin1: round(1/Q,0))
{
dat_concat<- rbind(dat,dat)
}
# sample with replacement from expanded (1/Q times) data set a new data set of same dim
# sample without replacement from above data set with length equal to original data
# compute fitness by origin from above data set
for(rin 1:R){
index<- sample(1:dim(dat_concat)[1],dim(dat_concat)[1], replace=TRUE )
super_pop<- dat_concat[index,]
index_2<- sample(1:dim(super_pop)[1],dim(dat)[1]*(Q/q),replace=FALSE)
boot_samp<- super_pop[index_2,]
attach(boot_samp)
# sum no. of offspring by adult id and compute fitness

boot_samp_adultID<- aggregate(boot_sampSoffspring,
list(boot_sampS$sample,boot_sampS$origin),sum)

#boot_samp_adultID<- boot_samp

names(boot_samp_adultID)<- c("sample","origin","offspring")
attach(boot_samp_adultID)

fitness_h[r]<- mean(as.numeric(boot_samp_adultID[origin=="h",]Soffspring),na.rm=T)

fitness_w][r]<- mean(as.numeric(boot_samp_adultiD[origin=="w",]Soffspring),na.rm=T)

#print(fitness_h[r])
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RRS<- fitness_h/fitness_
sd_RRS_multi_qg[k]<- sd(RRS)

RRS_values[k]<- mean(RRS)

#print(length(sd_RRS_multi_q))
Par(cex=1.5)

plot(fraction,sd_RRS_multi_q, xlab="Smolt Sampling Fraction - Q",ylab="Bootstrap Standard Error of
RRS",main="Superpopulation Bootstrap of RRS for Finite Sampling Case")

attach(dat)
sample_RRS<- mean(dat[origin=="h",]Soffspring)/mean(dat[origin=="w",]Soffspring)

cat("Sample RRS =",sample_RRS)

Example Run

> RRS.superpop.boot.multq(zip_wh_.3_30_22.5_q.3,.333,¢(.1,.2,.3333),10)
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> Sample RRS = 0.7904855

Superpopulation Bootstrap of RRS for Finite Sampling Case

0.10 0.12 0.14 0.16
| | | |
>

Bootstrap Standard Error of RRS

0.08
|
>

0.06
|
>

\ \ \ \ \
0.10 0.15 0.20 0.25 0.30

Smolt Sampling Fraction - Q

Sample Data Set for this Example:

Data used for this example was simulated from a zero-inflated Poisson distribution with probability of
zero equal to 0.3 and hatchery and wild offspring mean offspring count of 22.5 and 30 respectively.
Sample sizes for the hatchery and wild were 75 and 150 respectively.

Appendix 1c. Bootstrap Percentile Method (power simulation algorithm)
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This R function outputs the power of a test of the difference in fitness between hatchery parents and
wild parents (or RRS different from 1). Output includes the power of the test, p-value of the test, a
bootstrap estimate of bias, and the bootstrap estimate of the standard error of estimated RRS.

Program Name: RRS.power
Instructions for use:

1. Download R from the website given in Appendix 1a. and follow steps 3. — 5. In Appendix 1a for
setting an R directory and creating an RRS dataset and dataframe.
2. Type RRS.power( ) atthe R prompt.
In the parentheses enter the arguments for RRS.power:
a. Your dataframe (‘data’) formatted as in Appendix 1a. Example - mydata
b. A level of significance (‘alpha’) for the estimated power. Example — 0.05.
¢. The number of bootstrap replicates (‘iter’). Example — 499.

The R program — RRS.power

RRS.power<- function(data,alpha,iter)
{
dat<- data
attach(dat)
n_h<- length(dat[origin=="h",]Soffspring)
n_w<- length(dat[origin=="w",]Soffspring)
n_h.total<- sum(dat[origin=="h",]Soffspring)
n_w.total<- sum(dat[origin=="w",]Soffspring)
#Center hatchery data
offspr_h_center<- dat[origin=="h",]Soffspring - mean(dat[origin=="h",]Soffspring)
#Center wild data
offspr_w_center<- dat[origin=="w",]Soffspring - mean(dat[origin=="w",]Soffspring)
#stack data
centered<- c(offspr_h_center,offspr_w_center)
dat<-cbind(dat,centered)

names(dat)<- c("sample","origin","offspring","cent_offspring")
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attach(dat)

hOoffspr_h<- matrix(sample(cent_offspring, n_h*iter,replace=T),nrow=iter)
hOoffspr_w<- matrix(sample(cent_offspring, n_w*iter,replace=T),nrow=iter)
hOoffspr_mean_h<-apply(hOoffspr_h,1,mean)
hOoffspr_mean_w<-apply(hOoffspr_w,1,mean)

hOoffspr_mean<- sort(hOoffspr_mean_w - hOoffspr_mean_h)
#it# Calculate critical cutoffs
critup<- quantile(hOoffspr_mean,.975)
critlow<- quantile(hOoffspr_mean,.025)
HiHH Calculate two-sided mean difference test probability for observed difference
diff.empirical<- mean(dat[origin=="w",]Soffspring)-mean(dat[origin=="h",]Soffspring)
RRS.empirical<- (mean(dat[origin=="h",]Soffspring))/(mean(dat[origin=="w",]Soffspring))
count<-length(hOoffspr_mean[abs(hOoffspr_mean)>=abs(diff.empirical)])
pvalue.empirical<-count/iter
# Sampling from H1: Sample wih replacement from centered offspring by origin
#fitness_h<- rep(NA,iter)

#fitness_w<- rep(NA,iter)

#for (r in Ll:iter) {

#index<- sample(1:dim(dat)[1],dim(dat)[1],replace=T)

# boot_samp<- dat[index,]

# sum no. of offspring by adult id and compute fitness

#boot_samp_adultiD<- aggregate(boot_sampScent_offspring,
list(boot_sampS$Ssample,boot_sampS$origin),sum)
# boot_samp_adultID<- boot_samp

# names(boot_samp_adultID)<- c("sample","origin","offspring","cent_offspring")

# attach(boot_samp_adultID)
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# fitness_h[r]<- mean(as.numeric(boot_samp_adultID[origin=="h",]Scent_offspring),na.rm=T)
# fitness_w([r]<- mean(as.numeric(boot_samp_adultID[origin=="w",]Scent_offspring),na.rm=T)
#}
hloffspr_h<- matrix(sample(dat[origin=="h",]Soffspring, n_h*iter,replace=T),nrow=iter)
hloffspr_w<- matrix(sample(dat[origin=="w",]Soffspring, n_w*iter,replace=T),nrow=iter)
hloffspr_mean_h<-apply(hloffspr_h,1,mean)
hloffspr_mean_w<-apply(hloffspr_w,1,mean)
#it## Sort and subtract fitness data vectors
# and accumulate into a fitness difference vector
hlbvec<- sort(hloffspr_mean_w - hloffspr_mean_h)
RRS.boot.mean<- mean(hloffspr_mean_h/hloffspr_mean_w)
RRS.boot.se<- sd(hloffspr_mean_h/hloffspr_mean_w)
boot.bias<-RRS.empirical-RRS.boot.mean
### Calculate the upper and lower cutoff percentiles for
# the lower and upper alpha criterion
effectlow<-round((alpha/2)* iter)
effectup<-round((1-alpha/2)* iter)
H#### Calculate Empirical Power
countup<-length(hlbvec[hlbvec>=critup])
countlow<-length(hlbvec[hlbvec<=critlow])
power.twotail<-(countup+countlow)/iter
### Calculate fitness differences that correspond to the
# upper and lower alpha criterion cuttoffs
h1.cic-list(ci=c(h1bvec[effectlow], hlbvec[effectup]))

###Display Results
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cat("The number of hatchery parents and wild parents assigned offspring are respectively ", n_h)
cat("and ", n_w,"\n")

cat("The number of hatchery offspring and wild offspring assigned parents are respectively ", n_h.total)
cat(" and ", n_w.total,"\n")

cat ("The power of the testis ", power.twotail,"\n")

cat ("for a difference in fitness between hatchery and wild parents of ",diff.empirical,"\n")
cat("The empirical p-value is ", pvalue.empirical,"\n")

print(“The bootstrap percentile confidence interval for the difference in fitness is: “)
print(hl.ci)

cat("The observed RRS is ", RRS.empirical)

cat(" and the bootstrap mean RRS is ",RRS.boot.mean,"\n")

cat("The bootstrap estimate of bias is ", boot.bias,"\n" )

cat("The bootstrap estimate of the standard error of RRS is ",RRS.boot.se,"\n")

}

Sample Output for Program RRS.power

>RRS.power(zip_wh_.3_30_22.5 q.3, .05, 499)

The number of hatchery parents and wild parents assigned offspring are respectively 75 and 150

The number of hatchery offspring and wild offspring assigned parents are respectively 1213 and 3069
The power of the testis 0.5831663

for a difference in fitness between hatchery and wild parents of 4.286667

The empirical p-value is 0.03406814

The bootstrap percentile confidence interval for the difference in fitness is

[1] 0.4733333 7.5600000

The observed RRS is 0.7904855 and the bootstrap mean RRS is 0.796873
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The bootstrap estimate of bias is -0.006387487

The bootstrap estimate of the standard error of RRS is 0.08282443

Sample Data Set for this Example:

Data used for this example was simulated from a zero-inflated Poisson distribution with probability of
zero equal to 0.3 and hatchery and wild offspring mean offspring count of 22.5 and 30 respectively.
Sample sizes for the hatchery and wild were 75 and 150 respectively.

Appendix 2
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Power to Detect Sample RRS Different from 1 when RRS =.74-.80
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